

Magic Finger: Always-Available
Input through Finger Instrumentation

Xing-Dong Yang1,2, Tovi Grossman1, Daniel Wigdor3, George Fitzmaurice1
1Autodesk Research

210 King St. East, Toronto,
ON, M5A 1J7, Canada

{firstame.lastname}@autodesk.com

2University of Alberta,
Edmonton, AB,

Canada, T6G 2E8
xingdong@cs.ualberta.ca

3University of Toronto,
Toronto, ON,

Canada, R3T 2N2,
dwigdor@dgp.toronto.edu

ABSTRACT
We present Magic Finger, a small device worn on the finger-
tip, which supports always-available input. Magic Finger
inverts the typical relationship between the finger and an
interactive surface: with Magic Finger, we instrument the
user’s finger itself, rather than the surface it is touching.
Magic Finger senses touch through an optical mouse sensor,
enabling any surface to act as a touch screen. Magic Finger
also senses texture through a micro RGB camera, allowing
contextual actions to be carried out based on the particular
surface being touched. A technical evaluation shows that
Magic Finger can accurately sense 22 textures with an accu-
racy of 98.9%. We explore the interaction design space ena-
bled by Magic Finger, and implement a number of novel
interaction techniques that leverage its unique capabilities.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design
Keywords: Touch input, always-available input, gesture
input, contextual action, texture reorganization

INTRODUCTION
Recent years have seen the introduction of a significant
number of new devices capable of touch input. While this
modality has succeeded in bringing input to new niches and
devices, its utility faces the fundamental limitation that the
input area is confined to the range of the touch sensor. A
variety of technologies have been proposed to allow touch
input to be carried-out on surfaces which are not them-
selves capable of sensing touch, such as walls [16, 20],
tables [20], an arbitrary piece of paper [18] or even on a
user’s own body [18, 26, 40].
Mounting cameras on the body has enabled these regions to
become portable [17, 18, 34, 36]. However, like other vi-
sion-based implementations, the range of the sensor is lim-
ited to the viewing area of the camera, thus the capabilities
of these sensors are in some ways more limited than are
non-vision based techniques.

These approaches to instrumentation have all focused on
enabling touch capability for surfaces the user will touch
with their finger. To overcome their inherent limitations,
we propose finger instrumentation, where we invert the
relationship between finger and sensing surface: with Mag-
ic Finger, we instrument the user’s finger itself, rather than
the surface it is touching. By making this simple change,
users of Magic Finger can have virtually unlimited touch
interactions with any surface, without the need for torso-
worn or body-mounted cameras, or suffer problems of oc-
cluded sensors.
Our work has been inspired by earlier projects in always-
available input [41]. Like those earlier projects, Magic Fin-
ger is capable of sensing the moment of touch and relative
finger displacement on a surface. Further, inspired by the
versatility of the human finger, Magic Finger can also sense
the texture of the object a user touches, allowing for the use
of a machine learning classifier to recognize the touched
object. Thus, contextual actions can be carried out based on
the particular surface being touched. Additionally, Magic
Finger can also identify artificial textures and fiduciary
markers. This extends its ability to recognize richer infor-
mation, thus enabling many novel interaction techniques.
Magic Finger is a thimble-like device worn on the user’s
finger (Figure 1). It combines two optical sensors: a lower-
resolution, high speed sensor for tracking movement, and a
higher-resolution camera for capturing detail. In addition to
this device, the contributions of this work also include an
exploration of associated hardware and software design
spaces, an evaluation of its texture sensing accuracy levels,
and a set of applications and interactions that are enabled
by Magic Finger.

Figure 1: The Magic Finger device.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’12, October 7-10, 2012, Cambridge, MA, USA.
Copyright © 2012 ACM 978-1-xxxx-xxxx-x/xx/xx... $10.00. �

RELATED WORK
In this section, we review the related literature in the areas
of always-available input, research on contextual actions,
and augmentation of the user’s finger.

Always-Available Input
Advanced sensing technologies have been used to help
extend our ability to interact with computers from any-
where, supporting always-available input [41].
One way to accomplish this is to extend the range of devic-
es. SideSight [12] uses an array of proximity sensors to
detect a users’ finger movement on the side of a cell phone.
Therefore, touch input is no longer limited to the small re-
gion of the touch screen. Similarly, Portico [7] and Bonfire
[30] used cameras installed on a laptop to capture the input
occurring around it. PocketTouch allows capacitive sensors
to function through fabric [40]. While these devices extend
the range of sensors, they also are anchored to a device.
Efforts have also been made to instrument a user’s sur-
rounding environment to enable touch. Touché [42] enables
touch on everyday objects, including humans and liquids,
while Scratch Input [20] recognizes gestures on larger sur-
faces, but each require a sensor to be connected to the
touched object. Wimmer and Baudisch [49] demonstrated
that touch gestures can be enabled on an arbitrary object by
having the object connect to an electric pulse generator and
a Time Domain Reflectometry sensor.
Camera based sensors have also been used to sense input.
Wilson [47] demonstrated that a properly positioned depth
camera can be used to sense touch on surfaces. In the
LightSpace system [48], a small room becomes interactive
by combining multiple depth cameras and projectors.
While the instrumentation of environments is promising, it
is also limited. Alternatively, the human body can itself be
instrumented to sense input. Interactive clothing is one way
to do so [28], but requires special clothing.
Many techniques enable body input of taps, postures, and
whole body gestures. For example, Saponas et al. [41] used
arm mounted electromyography sensors to sense pinch ges-
tures made by different fingers. Cohn et al. [16] proposed a
technique to sense whole-body gestures that utilizes exist-
ing electromagnetic noise from nearby power lines and
electronics. Harrison et al.’s Skinput [26] used arm mount-
ed bio-acoustic sensors to detect finger tap on the different
locations of a users’ forearm. Tiny sensors could also be
embedded on [36], or implanted under [29] the user’s skin.
These techniques all open up new and interesting interac-
tion opportunities, however they cannot sense detailed fin-
ger movements required to emulate touch input.
Several techniques have supported richer input on the hu-
man body [24]. The Imaginary Phone [17] uses a 3D cam-
era to detect taps and swipes on a user’s palm. OmniTouch
[18] uses a depth-sensing camera and a micro projector to
turn a user’s palm into a touch-sensitive display.
SixthSense uses a small projector and camera, worn in a
pendant device, to enable touch interactions on and around

the body [34]. While such techniques enable always-
available input, the input is generally restricted to the body,
and can suffer from occlusion. In contrast, we propose fin-
ger instrumentation, enabling input on almost any surface.

Contextual Interactions
Magic Finger is able to recognize textures and use the in-
formation to understand the environment, or object the user
is interacting with, and perform associated contextual ac-
tions. While texture has been previously explored as an
output channel for touch input [8, 22, 31] we are unaware
of work where texture is used as an input channel.
Relevant work by Harrison and Hudson used multispectral
material sensing to infer the placement of mobile devices,
and discussed potential uses, such as tunring off a cell
phone when it is placed in a purse [19]. Alternatively a
touch sensitive device can respond differently if it knows
what caused the touch or who touched it [6, 25, 38, 50].
More broadly, research on contextual interactions in the
ubiquitous computing literature is also relevant. We refer
the readers to comprehensive surveys [10, 14].

Augment The User’s Finger
Early work in augmenting the human finger lies in the vir-
tual reality research, where data gloves are used to track the
user’s hand position in space [43]. Several projects also
exist outside of the VR literature. Marquardt [32] augment-
ed a user’s finger with fiduciary markers to inform an inter-
active tabletop what part of the finger was in contact with
the surface. With Abracadabra [21], users wear a magnet
on their finger to provide input above a mobile device. Fin-
gerFlux [44] also uses a small magnet on the finger, to sim-
ulate haptic feedback above an interactive tabletop. While
these projects are all related in that they instrument the fin-
ger, none had the goal of supporting always-available input.
Logisys’s Finger Mouse, a cylinder-shaped optical mouse
that can be mounted on a finger, is a relevant commercial
product [5]. It is used to control an on-screen cursor with a
relative input mapping. Magic Finger extends this basic
capability to also support absolute targeting, texture recog-
nition, and fiduciary marker identification. Furthermore,
with Magic Finger, we explore a smaller form factor, and a
rich interaction design space beyond cursor control.

HARDWARE DESIGN SPACE
In designing a device, our main goal is to enable the finger
to sense touch on physical objects, without any environ-
mental instrumentation. In order to emulate traditional
touch techniques, the device must be able to sense contact
and 2D positional movements. In this section, we present a
design space of possible hardware implementations that
could enable these goals. For a broader discussion of hard-
ware for small on-body devices, we refer the reader to Ni
and Baudisch’ s work on disappearing mobile devices [36].

Scope of Recognition
We define three scopes of recognition: none, class, and
instance. In its simplest form, the device could be able to
sense finger movement without the capability of knowing

anything about the contact object (none). However, when it
is the finger itself performing the sensing, it would be help-
ful to know what the finger is touching, so the input could
be directed to an appropriate device. The scope of recogni-
tion could be increased to recognize certain classes of ob-
jects (e.g. a table or a phone) (class), or could be further
extended to distinguish between specific instances of ob-
jects (e.g. my table vs. your table) (instance).

Sensing X-Y Movements
To emulate traditional touch, the hardware must be able to
sense X-Y movements. Previous work has shown that an
optical flow sensor (found in optical mice) can be used as a
small touch sensitive device [9, 36]. As such, 2D finger
movements could be detected by affixing an optical flow
sensor to the finger. Such sensors can be extremely small
and offer reliable 2D motion sensing on a wide variety of
surfaces, but a light source is required. Alternatively, a me-
chanical device, such as a small trackball could be used, but
may not be as robust to varying types of surfaces. A me-
chanical device may also require a larger form factor.

Sensing Material
To increase the recognition scope, the device could sense
the material that the finger is in contact with. This could be
achieved with optics, using texture recognition algorithms
[37]. Using an optical flow sensors may be difficult, as
their resolutions are typically low (e.g. 18x18). Higher
quality cameras may be required to improve the robustness
of material recognition or to extend the recognition scope
to instance. Alternatively, a Multispectral Material Sensor
[19] could be used, but would only support a recognition
scope of class. To sense properties such as roughness, soft-
ness, and friction, a texture sensor [35] could be used, but
may require the user to touch the surface in specific ways.

Sensing Contact
To sense contact, a hardware switch, which connects a cir-
cuit when being pressed by a touching force, may be most
accurate. While this would enable explicit sensing of con-
tact, it would require the device to have an additional sin-
gle-purpose sensor. Contact could instead be inferred from
an audio sensor [25], but accuracy may not be as high. Al-
ternatively, contact could be inferred from an optical sensor
that is already present to sense movements and material.

Output
In the simplest form, the device could provide no output at
all to the user. However, this could be severely limiting,
especially in cases where periphery devices that provide
feedback are not available. Tactile feedback is possible but
may come with high power consumption, and would re-
quire an additional component. One or more LEDs could be
used to display bit-wise low resolution information [36,
23]. If the device used optical sensing, it may already be
equipped with an LED, preventing the need for additional
components. Richer forms of output could be provided by a
speaker or LCD display, but would require larger form fac-
tors and greater power consumption.

Form Factor
The device needs to be small so that it can fit on the users’
finger. Ideally, the device would be undetectable when
dormant [36]. There are a number of ways which the device
could be affixed to the finger. It could be embedded on a
ring or thimble like structure worn on the tip of the finger
(Figure 2a). This would allow users to remove the device
when desired, or twist it to deactivate sensing. Alternative-
ly, if small enough, the device could potentially be embed-
ded under the finger nail (Figure 2b), on the surface of the
fingertip skin, or implanted under the skin with exposed
components for sensing (Figure 2c) [36]. A larger form
factor could be worn above the finger. However this may
cause offset problems in the sensing, and could be suscep-
tible to occlusion problems.

Figure 2: Possible form factors for the hardware.

MAGIC FINGER
After carefully considering the aspects of the hardware
design space, we developed Magic Finger, a proof-of-
concept prototype that enables always-available input
through finger instrumentation. In this section we describe
our implementation, and the basic capabilities of the device.

Hardware Implementation
To achieve sensing of positional movements and sensing of
material, our prototype uses two optical sensors. A low
resolution high frame rate optical flow sensor is used to
sense 2D finger movements, and a higher resolution, lower
frame rate camera is used to sense material (Figure 3).

Figure 3. The Magic Finger Device.

Optical Flow Sensor
We used an ADNS 2620 optical flow sensor with a modi-
fied HDNS-2100 lens. This sensor is often used in optical
mice, and is reliable on a large variety of surfaces. The sen-
sor detects motion by examining the optical flow of the
surface it is moving on. The ADNS 2620 sensor is a low-
resolution black and white camera (18 × 18 63μm2 pixels).
Our initial tests showed that the sensor could be used to
recognize textures, but only at the class scope of recogni-
tion, and only with a very small number of items (4).

Micro RGB Camera
To provide an enhanced scope of recognition, we used an
AWAIBA NanEye micro RGB camera [4]. In comparison
to the optical flow sensor, NanEye has a higher resolution
and smaller pixels, and thus captures more subtle details of
textures. The micro camera is 1mm × 1mm × 1.5mm
(Figure 4). It captures color images at a resolution of 248 ×
248, 3 μm2 pixels, at 44 fps. For image processing, we con-
verted the signal to greyscale. While it would be desirable
to also use the NanEye for sensing optical flow, its low
frame rate makes this difficult. We expect future solutions
could be achieved with a single miniature sensor.
We embedded the NanEye on the edge of the optical flow
sensor. To prevent occlusions from wiring, we crop to only
use 70% camera’s view to 175 × 175 pixels (Figure 4).
Light Source
In order for the camera and the optical flow sensor to func-
tion, an external light source is needed to illuminate the
surface underneath it. We used a 5mm white LED, which
has similar size and brightness with those used in optical
mice. The LED can also be conveniently used for output.
Physical From
Magic Finger is affixed to the fingertip using an adjustable
Velcro ring. A small plastic casing holds the components.
The case was designed to control the distance between the
RGB camera and surface during contact (Figure 1).
Computer Interfacing
The optical flow sensor and the LED were connected to an
Arduino UNO board [3], which facilitates communication
with the computer, an HP TouchSmart Tm2 running Win-
dows 7. The NanEye is connected directly via USB. Teth-
ering the device to a computer was an enabling technology
for our prototype, and not our vision for future implementa-
tions. See Future Work for a discussion of power and com-
munication capabilities required for an untethered implemen-
tation.

Figure 4: Left: the NanEye camera. Right: the field
of view is a 175 x 175 rectangle (yellow region). The
red region is used to detect changes in contrast.

Device Capabilities
Relative Positional Movement
Positional movement data is obtained directly from the
optical flow sensor using the Arduino. Our program re-
ceives (X,Y) coordinates a resolution of 400cpi at 15 fps.
Sensing Contact
Magic Finger uses the micro camera to sense contact with a
surface. Rapid changes in contrast (due to reflection of the
illuminator) are used to signal changes in contact. To detect

contact, we continuously calculate the overall contrast of a
60x60 pixel square of the sensor image, by averaging the
square difference between each pixel and its neighbors (in
grayscale space). When the Magic Finger is more than
5mm from a surface, light from its built-in LED is not re-
flected back, and a uniformly darker image is seen. A
change within a small window of time form this darker
image to a brighter image is measured against threshold
values of our contrast metric for changes downward (lift-
up) and upward (touch-down) (see Figure 5).

Figure 5. Contrast increases with the finger ap-
proaches a surface. Leftmost: the Magic Finger is
more than 5mm from a surface. Rightmost: the
Magic Finger is in contact with the surface

Identifying Material
When Magic Finger detects a contact event, the current
frame of the RGB Camera is used for. texture recognition.
Textures are classified using a machine learning algorithm.
The first step is to describe the texture using a feature vec-
tor. In our implementation, we used Local Binary Patterns
(LBP) to retrieve the unique features [37]. The algorithm
detects 10 microstructures inside a texture (e.g. edges,
lines, spots, flat areas). The histogram of the 10 microstruc-
tures uniquely describes a texture. This algorithm is orien-
tation invariant, allowing recognition independent of the
angle which the finger touches a surface. The feature vec-
tors are also gray-scale invariant, making it robust in differ-
ent lighting conditions. To train the classifier, we used
Chang and Lin’s LIBSVM algorithm using a Support Vec-
tor Machine (SVM) [13]. Before we trained the model, we
tuned the required SVM parameters that gave high cross-
validation scores.
Environmental vs. Artificial Textures
We classify the types of textures Magic Finger can sense as
environmental and artificial. Environmental textures are
naturally occurring in the user’s environment, such as a
table or shirt. In contrast, artificial textures are explicitly
created for the purpose of being used by Magic Finger. We
found that a simple way to create textures was to print a
grid of small ASCII characters (Figure 6).
Fiduciary Markers
The above classification of textures allows Magic Finger to
increase its scope to class recognition. If we are to further
increase the scope to instance recognition, further capabili-
ties are required. A common approach to tag specific ob-
jects is to use bar codes or fiduciary markers [2, 15]. We
used the Data Matrix code, a two-dimensional barcode con-
sisting of a grid of black and white cells. The Data Matrix
codes we used were 10×10 cells, representing numerical
values between 0 and 9999.
To be properly recognized, the entire Data Matrix must be
in the field of view. To ease targeting, we print a cluster of
identical Data Matrix codes, each exactly ¼ the size of the

RGB camera’s field of view to ensure at least one code is
fully visible. A library is used to decode the tags [1]. When
Magic Finger detects a contact event, an API call is made
to decode the frame. This call takes approximately 240ms,
and is performed before texture classification occurs.
A future implementation of Magic Finger could utilize
grids of fiduciary markers, such as is done by Anoto, in
place of the ASCII-based artificial textures we designed.
Nevertheless, we found that the ASCII-based technique
was an effective way to easily generate artificial-textures.

Figure 6: Left: 22 environmental textures used in
the study. Right: Data Matrix, artificial texture, and
environmental texture, as seen by a human and by
the NanEye.

SYSTEM EVALUATION
We conducted a study in order to evaluate the accuracy at
which Magic Finger can recognize environmental textures,
artificial textures, and Data Matrix codes. This study was
meant to serve as a technical evaluation of Magic Finger’s
capabilities, not a user study of the device.
For the environmental textures, we collected 22 different
textures from a large variety of everyday objects, including
public items, personal items, and parts of the user’s body.
The textures we sampled are shown in Figure 6.
To create artificial textures, we printed a grid of ASCII
characters in black Calibri font, with a font size of 2pt and a
line space of 1.6pt. The textures were printed on a Ricoh
Aficio MP C5000 laser printer at 1200 DPI. We chose 39
characters found in a standard US English keyboard, in-
cluding all 26 English capital letters (A - Z) and 13 other
characters [~ ! @ # $ % ^ & (- + = .”]. For the data matrix,
we randomly selected 10 out of 10,000 possible codes:
1257, 3568, 9702, 3287, 4068, 5239, 8381, 6570, 0128, and
2633, with each printed clusters of 72 × 15 identical codes.
For each environmental texture, artificial texture, and Data
Matrix, 10 samples were collected twice a day for 3 days
(as in [19]). Samples in the same class were obtained from
the same object but from different locations. In total, we
collected 60 samples for each material. The accuracy of
recognition was tested using a 5-fold cross validation pro-
cedure. Because training and testing data may include
points that were sampled in an adjacent time (e.g. points
that tend to be similar), we randomized the order of the

points prior to the test [19]. The Data Matrix recognition
was evaluated by calculating the accuracy of decoding.

Results
Cross validation achieved an accuracy of 99.1% on the 22
tested environmental textures. This is a promising result
given that we were only using 175 × 175 pixels (e.g. 70%
of the camera’s view). To better understand how the classi-
fication accuracy is affected by the resolution of the cam-
era, we cropped the sample images from their center into
smaller images of 18px2, 70px2, and 122px2. The results of
the 5-fold cross validation are shown in Figure 7, left.
Samples of 70px2 achieved 95% accuracy across the 22
textures. This gives future engineers some flexibility when
choosing sensors for finger instrumentation.

Figure 7: Cross validation accuracy. Left. On envi-
ronmental textures. Right. On and mixed environ-
mental and artificial textures.

For the ASCII artificial textures, cross validation yielded
83.8% accuracy with all the 39 tested characters. Given the
large number of textures, this result is also promising. The
lower accuracy is due to the larger number of textures, and
also because the different textures are less visually distin-
guishable than the environmental textures we selected.
To see how the number of textures impact accuracy levels
and find an optimal set of characters to use, we performed
another 4 iterations of tests by progressively removing tex-
tures that resulted in lower accuracy rates. The accuracy
levels through each iteration were 86.4% for 36 textures,
89.9% for 31 textures, 97.9% for 13 textures, and 99.5%
for 10 characters [B G I ! # % ^ (+ .].
The above results indicate that Magic Finger can recognize
22 environmental textures or 10 artificial textures with an
accuracy of above 99%. We also tested accuracy levels
when combining these two sets, for a total of 32 textures.
The Cross validation accuracy was 98.9% using the
175x175 pixel image. We also tested the classification ac-
curacy with the smaller cropped images. The results of the
5-fold cross validation are shown in Figure 7, right.
The Data Matrix codes were correctly decoded for 598 of
the 600 samples we collected, which yields an accuracy of
99.7%. In both failure cases (one for 3568, one for 9702)
the API reported that no Data Matrix was recognized.

Summary
The results of our evaluation are very promising. Accuracy
levels indicate that Magic Finger would be able to distin-
guish a large number of both environmental and artificial
textures, and consistently recognize Data Matrix codes.

Compared to Harrison and Hudson’s multispectral material
sensing, which was able to classify 27 materials with an
accuracy of 86.9% [19], we have obtained an accuracy of
98.9% across 32 textures. Overall, this demonstrates the
feasibility of using a Magic Finger device for interactive
tasks. In the following sections, we explore the interaction
techniques and usage scenarios that Magic Finger supports.

INTERACTION DESIGN SPACE
Having developed a robust device, we sought to develop
interaction techniques to facilitate its use. Here, we define
the interaction design space for Magic Finger using 5 di-
mensions, described below.
Input Texture
The input textures vary according to the degree of specifici-
ty and information bandwidth they allow. We differentiate
our interaction design space by 3 types of textures the user
may encounter: environmental textures are textures of real
objects, unmodified for Magic Finger; artificial textures
refer to textures engineered for the Magic Finger, as we
have discussed previously; and dynamic textures are those
that change over time. Dynamic textures, for example, can
be used to communicate between 2 Magic Finger devices.
Input Type
The possible input type depends on the specific capabilities
of an implementation of Magic Finger. That is, our imple-
mentation is limited to having the Magic Finger act as a 2-
state input device. Thus, input actions can either be tap
input (sensing contact), or gesture input (positional move-
ment).
Texture to Result Mapping
The ability to recognize different textures allows contextual
actions to be carried out by the Magic Finger. The map-
pings of texture to result vary by the degree with respect to
their artificiality: Intrinsic mappings rely on the semantics
of the touched object to define the mapping. For example,
tapping on the empty space of a phone always triggers a
function of the phone, e.g. fast dial a number. Intrinsic
mappings may suffer from a lack of flexibility, and con-
flicts in mappings. In contrast, extrinsic mappings associate
commands to unrelated physical objects. Such mappings
are flexible but may be less discoverable or memorable.
Resulting Action Type
Many types of actions could result from user input. We
classify three main types: perform a command execution,
provide continuous control, or serve as a mode delimiter.
Feedback
Based on needs, feedback can be internal or external to
Magic Finger. For example, internal feedback could pro-
vide information using an LED while richer external feed-
back could be provided by an attached or secondary device.

AUTHORING ENVIRONMENT
We created an application to help users manage their regis-
tered and recognized textures (environmental and artificial)
and their associated functional mappings. A window dis-
plays a list of the defined texture classes (Figure 8 left).
Each texture class in the list contains a sample image of the

texture and a user defined title for that texture class. Users
can double-click the sample images to view all the samples
of that object that are used in training the SVM model. A
button in the user interface can be used to create a new tex-
ture class. Users can also add samples to a new or existing
texture class as input to the recognizer.
Each texture class also has an associated dropdown menu,
which shows a list of functions which are preset resulting
actions that could be mapped to any texture class (Figure 8
middle). For the purposes of demonstration, we have prede-
fined a variety of resulting actions which can be mapped to
Magic Finger input. In some cases, the authoring environ-
ment allows the user to adjust parameters of an action. For
example, if the user selects the “Send SMS” action (which
automatically sends an SMS message) from the drop down
list, a pop up dialog is displayed where the user can enter a
recipient number and message. To automatically launch
external applications, the user can select “external applica-
tion” from the action drop down list. The user can then
drag-and-drop an icon of a desired application onto the
menu item (Figure 8 right). This allows the user to link
Magic Finger actions to existing applications, as well as to
define their own scripts in their preferred languages and
link them to Magic Finger.

Figure 8: Left: list of texture classes. Middle: the drop
down list of functions; Right: external applications

Authoring Artificial Textures
The authoring application also allows users to generate
ASCII-based artificial textures which can be used, for ex-
ample, as stickers to be placed on objects. In these textures,
the individual ASCII characters are so small that they are
indiscernible to the human eye, and can be used as pixels to
create two-colour graphical images. While each “pixel” is
the same character, the pixels can take-on a foreground or
background color. We chose two colors that are distin-
guishable by the human eye, but are indistinguishable in
greyscale during recognition (right).

Figure 9: Left: the paint.net application; Right: the re-
sulting texture.

To author these textures, we modified Paint.NET, an image
editing application, to include a “save as texture” option (
left). This option prompts the user to enter a character, and
then converts the current image into an HTML document
consisting entirely of that character rendered in either the
foreground or background color. Such images can be used
to give the artificial textures user friendly appearances,
such as icons representing their functions.

INTERACTION TECHNIQUES
In order to explore the interaction design space we have
described, we implemented a number of interaction tech-
niques. Each of the following techniques serves as an ex-
emplar of a point in our design space, as well as a portion
of a coherent set of possible uses for Magic Finger. Some
of the interactions are novel while others show how Magic
Finger can be used to implement previously published
techniques that required numerous different hardware con-
figurations. In the example interaction techniques below,
we explicitly mention the corresponding design dimension.
Some of the below interactions involve multiple Magic
Fingers. To implement these scenarios, we constructed a
second Magic Finger without the RGB camera. This device
was unable to sense textures, but was sufficient for demon-
strating the desired multiple-device interactions.

Tap Input
PocketTouch
Magic Finger can be used to remotely access or control
mobile devices. We implemented a resulting action of mut-
ing an incoming Skype call (command execution), and
mapped this to touching a handbag. If the user receives an
unwanted call when their Smartphone is in the handbag, the
user can simply tap the handbag to mute the notification.
This interaction is much like PocketTouch [40], but does
not require a phone’s capacitive sensor to be placed in a
special mode, or require the phone to be placed at a specific
location (Figure 10a).

Tap-to-Talk
Because Magic Finger can identify the object that users
touch, tapping different surfaces can trigger different com-
mand executions. In our implementation, the empty surface
of a phone is used as a shortcut ‘button’ to send a frequent
SMS message to a predefined recipient, e.g. “I’m on my
way home.” (b). This is an example of an intrinsic map-
ping. Users may also take advantage of inherent features of
physical artifacts to define input textures. We created an
extrinsic mapping of tapping on the logo of a t-shirt, to
launching the Windows Voice command app. Thus, tap-
ping on this special area of the shirt serves as a mode delim-
iter for entering speech input (Figure 10c).
Skinput
By recognizing skin as a texture, Magic Finger provides a
method for using skin as an input surface, without requiring
additional sensors. We utilized this to create an “am I late?”
gesture – when the user taps their wrist (where a watch
might have been – intrinsic mapping), Magic Finger checks
for an upcoming appointment and either displays it on-
screen (external feedback), or blinks its built-in LED (in-
ternal feedback) to indicate “time to head out!” (Figure
10d).
Pinching Finger to Thumb
The finger to thumb pinch action has been shown to be a
useful gesture for freehand input [46]. By recognizing the
thumb as an environmental texture, Magic Finger can easi-
ly detect a pinch when the thumb is tapped (Figure 10e).
We mapped pinch to a command execution of advancing
slides in a presentation, as a replacement for holding a
wireless presentation mouse.
Data Matrix Buttons
In addition to tapping environmental textures, users can
also tap artificial ones. A grid of printed Data Matrix codes
can be used as physical buttons. The decoded numeric data
can be used to trigger a command or to retrieve contextual
information. In our implementation, we assigned specific
numbers to PowerPoint documents. A user can print the

Figure 10. Tap and Gestural-based Interactions. (a) Tap on the bag to mute a Skype call; (b) Tap on the phone to send a
frequent SMS message; (c) Using the logo of a t-shirt as a mode delimiter; (d) Tap the wrist to check an upcoming ap-
pointment; (e) Pinch gesture (f) Data Matrix Buttons; (g) Occlusion Free Input; (h) FaST slider widget; (i) Multi-surface
crossing gesture; (j) Application launch pad; (k) Sticker as disposable remote controls; (l) Passing texture to another Mag-
ic Finger; (m) Use Magic Finger as a periscope to check out traffic.

PowerPoint slides with the associated Data Matrix code at
the bottom of each page. Tapping the code opens the
presentation on the user’s computer. We also associated
codes on magazine articles with webpages (Figure 10). Tap-
ping the Data Matrix opens a URL associated with the article.

Gesture Input
Occlusion Free Input
Occlusion Free Input allows users to interact with a touch
screen device by gesturing on a nearby surface. This elimi-
nates the occlusion of the screen by a users’ hand. We im-
plemented a navigation application, where users can pan or
zoom a map displayed on a tablet device (continuous con-
trol). By mapping this action to the back of a tablet, users
can carry out back-of-device input [45], without needing a
specially instrumented tablet device. Additionally, Side-
Sight [12] can be emulated by mapping the action to the
table that the device is resting on (Figure 10g).
FaST Sliders
We implemented a FaST slider widget to control volume
and playback of multi-media [33] (Figure 10h). FaST slid-
ers allow manipulation of multiple, discrete or continuous
parameters from a single menu. Once activated, the user
can select a parameter to manipulate with a directional
mark. While the finger remains down, the user can then
adjust the value of the selected parameter by dragging. If
the user is close to a display device, visual feedback for the
menu can be displayed onscreen (external feedback). When
a display is not available, we blink the Magic Finger’s LED
to indicate when a parameter has been selected, so the user
knows to begin parameter adjustment (internal feedback).
Multi-Surface Crossing Gestures
Magic Finger can detect a crossing gesture from one sur-
face to another (Figure 10i). This is accomplished by per-
forming texture recognition any time the finger dwells
while still in contact with a surface. We mapped this ges-
ture to activating a slide deck on a projector in a meeting
room. The user can tap a Data Matrix on their slide printout
to open the PowerPoint, and tap the table to connect the
laptop to a secondary monitor (i.e. projector). If a crossing
gesture is detected from the Data Matrix to the table, the
PowerPoint window is moved from the laptop display to
the projector. In this case, the crossing gesture has an in-
trinsic mapping, as it represents a relationship between the
two mapped surfaces. These multisurface gestures are simi-
lar to stitching [27], but do not require inter-device com-
munication between the surfaces.

Input Stickers
Artificial textures can be used to increase the number of
distinguishable surfaces in an area. By printing the artifi-
cial textures on adhesive strips, we create Input Stickers.
We describe the associated interaction techniques below.
Application Launch Pad
We printed a set of Input Stickers that take-on the appear-
ance of desktop icons (Figure 10j). The user can place these
stickers in a convenient location in their work area, and tap
the stickers to launch the associated desktop application.
This emulates functionality shown in MagicDesk without

requiring the entire desk surface to be a touch sensitive
surface [11].
Disposable Remote Controls
Input stickers can also be used as remote controls. We
printed a stack of stickers and put them beside the physical
on-off switch for the speakers in a public room (Figure
10k). When entering a room, a user can pick up a sticker
before sitting down. Tapping the sticker plays and pauses
music on the room’s sound system. When leaving the
room, the user can replace the sticker on the stack, or dis-
pose of it.

Additional Features
Identify Awareness
An interesting property of Magic Finger is that it is inher-
ently user-identity aware. We configured the music remote
control, described above, to play a user’s favorite type of
music, based on the identity of the user tapping the sticker.
Traditional touch devices are not able to recognize users,
without specialized hardware and making potentially error
prone inferences [39, 50].
Passing Textures
In some cases, a user may want to virtually pass a texture
that has been read by the Magic Finger to a remote receiver
or to another user. We use the pinch gesture as a mode de-
limiter for “picking up” a texture. If a pinch is detected
immediately after a Data Matrix is tapped, then the Data
Matrix code is temporarily stored. When the pinch is re-
leased, the LED emits a Morse code pattern, representing
the 4 digit number associated with the Data Matrix. We
implemented a simple product scanner application that uses
a webcam to read the Morse code and display information
about the associated item, such as its price. We also imple-
mented a second Magic Finger that can read the Morse
code as a dynamic texture and carry out the associated
functions of the Data Matrix code after it is passed to the
user from the source user (Figure 10l).
The Periscope
People often use their fingers to sense areas that they can-
not see. For example, we may use our hand to search for a
pen dropped between the cushions of a couch. Magic Fin-
ger allows users to enhance the capabilities of such prob-
ing. By viewing its real-time video feed on a handheld de-
vice, the Magic Finger becomes an extension of the user’s
eyes. For example, a user can look behind them, around a
corner or out the window of a car by simply pointing their
finger in the associated direction (Figure 10m).

DISCUSSION AND FUTURE WORK
Having used Magic Fingers, we have made several obser-
vations which may be of benefit to those seeking to imple-
ment one. In this section, we discuss some of the insights
we have gleaned from our experiences.

Device Size and From Factor
While our form factor is small enough to fit on a fingertip,
it is still larger than what we envision for the future.

The hardware does have room to be made much smaller.
Our prototype is limited by the size of the ADNS 2620
chip. The chip was designed to be used in a mouse, and so
its form factor is optimized to fit with the other components
of the mouse. The core sensor of the chip, however, is only
2 × 3 mm wide. Therefore, reengineering the chip to fit the
sensor will significantly reduce the size of Magic Finger.
The NanEye camera has an ideal form factor. However, it
is limited by its frame rate. Ideally, Magic Finger would
need only one optical sensor to handle all of its functionali-
ty. For optical flow to be detected reliably, the sensor
would need to have a frame rate of approximately 1500fps.
Based on our evaluation, the resolution should be at least
70 × 70px to enable both optical flow and texture recogni-
tion. Given existing technologies, we are optimistic that a
sensor matching these specifications will soon be available.
The other component that would need to be miniaturized is
the LED. Micro LED’s are available today; testing would
be needed to determine minimum brightness requirements.

Power and Communication
A limitation of our hardware is that it is tethered to a near-
by host PC. This simplified our implementations, but for
Magic Finger to become a completely standalone device,
power and communication needs to be considered. Holz et
al. provide a thorough review of potential technologies that
can be used for power and communication in a micro form
factor [29]. Powering can be accomplished through re-
chargeable batteries, or harvesting power from the body or
the environment [29]. Communication can be provided
through a Bluetooth protocol, which consumes little power.
Processing responsibilities could be performed by a Blue-
tooth-tethered mobile phone.

Evaluations
We presented a technical evaluation that demonstrated
promising results for sensing accuracy of the Magic Finger.
The results should be considered a high bar of what a Mag-
ic Finger could achieve, since the samples were collected
under controlled conditions. Future evaluations should look
at how differences in contact angles may impact captured
image quality. Design considerations of the form factor of
the device should aim to facilitate capturing good quality
samples.
Magic Finger could also benefit from more formal user
studies to understand how the device would be used by end
users. For example, a user study may help us find a pre-
ferred location to mount the device, or identify important
topics we have not explored, such as the “Midas touch” and
false activations.

Interactions
The interactions which we implemented and demonstrated
should be considered exploratory in nature, and only repre-
sent a small sample of what is possible with the Magic Fin-
ger. In our actual implementation, issues such as conflicts
between operating modes and resulting actions would re-
quire a more careful examination. Introducing aids to help

users learn or remember mappings would also be a fruitful
topic for future work.
Magic Finger in its current implementation is limited in
absolute positioning. One known technique to enable abso-
lute positioning for artificial textures would be to encode
location into the textual pattern (eg: Anoto [2]). For natural
textures, absolute positioning may never be possible, alt-
hough with improved sensing, location could be sensed at
higher granularity (e.g. recognize locations of skin rather
than simply “skin”).

CONCLUSION
In this paper, we introduced the concept of finger instru-
mentation and our prototype Magic Finger, a novel device
that extends users’ touch capability to everyday objects.
Instead of requiring instrumentation of the user’s environ-
ment, or external cameras which may be prone to occlu-
sion, Magic Finger is unique in that the finger itself is in-
strumented to detect touch. Our system evaluation showed
that Magic Finger can recognize 32 different textures with
an accuracy of 98.9%, allowing for contextual input. We
presented a design space of interactions enabled by Magic
Finger, and implemented a number of interaction tech-
niques to explore this design space. Future work will focus
on investigating topics such as “Midas touch” and false
activations, and on understanding how users will use the
Magic Finger. We will also explore hardware solutions for
miniaturizing the form factor of the Magic Finger.

REFERENCES
[1] 2D Technology http://www.2dtg.com/
[2] ANOTO http://www.anoto.com/
[3] Arduino http://arduino.cc
[4] AWAIBA www.awaiba.com
[5] Finger Mouse http://www.logisyscomputer.com
[6] Annett, M., Grossman, T., Wigdor, D. and Fitzmaurice,

G. (2011). Medusa: A Proximity-Aware Multi-touch
Tabletop.ACM UIST. 373-382, 2011.

[7] Avrahami, D., Wobbrock, J. O. and Izadi, S. (2011).
Portico: Tangible interaction on and around a tablet. ACM
UIST. 347-356.

[8] Bau, O., Poupyrev, I., Israr, A. and Harrison, C. (2010).
TeslaTouch: electrovibration for touch surfaces. ACM
UIST. 283-292, 2010.

[9] Baudisch, P., Sinclair, M. and Wilson, A. (2006). Soap: a
Pointing Device that Works in Mid-Air. ACM UIST. 43-46.

[10] Bellavista, P., Corradi, A., Fanelli, M. and Foschini, L.
(2013). A Survey of Context Data Distribution for Mobile
Ubiquitous Systems. ACM Computing Surveys. 1-49,
2013.

[11] Bi, X., Grossman, T., Matejka, J. and Fitzmaurice, G.
(2011). Magic Desk: Bringing Multi-Touch Surfaces into
Desktop Work. ACM CHI. 2511-2520, 2011.

[12] Butler, A., Izadi, S. and Hodges, S. (2008). SideSight:
multi-"touch" interaction around small devices. ACM
UIST. 201-204.

[13] LIBSVM--A Library for Support Vector Machines.
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[14] Chen, G. and Kotz, D. (2000). A Survey of Context-
Aware Mobile Computing Research (TR2000-381).

[15] Cheng, K.-Y., Liang, R.-H., Chen, B.-Y., Laing, R.-H.
and Kuo, S.-Y. (2010). iCon: utilizing everyday objects as
additional, auxiliary and instant tabletop controllers. ACM
CHI. 1155-1164, 2010.

[16] Cohn, G., Morris, D., Patel, S. N. and Tan, D. S. (2011).
Your noise is my command: sensing gestures using the
body as an antenna. ACM CHI. 791-800, 2011.

[17] Gustafson, S., Holz, C. and Baudisch, P. (2011).
Imaginary Phone: Learning Imaginary Interfaces by
Transferring Spatial Memory from a Familiar Device.
ACM UIST 283-292, 2011.

[18] Harrison, C., Benko, H. and Wilson, A. D. (2011).
OmniTouch: Wearable Multitouch Interaction
Everywhere. ACM UIST. 441-450, 2011.

[19] Harrison, C. and Hudson, S. E. (2008). Lightweight
material detection for placement-aware mobile computing
ACM UIST. 279-282, 2008.

[20] Harrison, C. and Hudson, S. E. (2008). Scratch input:
creating large, inexpensive, unpowered and mobile finger
input surfaces. ACM UIST. 205-208, 2008.

[21] Harrison, C. and Hudson, S. E. (2009). Abracadabra:
wireless, high-precision, and unpowered finger input for
very small mobile devices ACM UIST. 121-124, 2009.

[22] Harrison, C. and Hudson, S. E. (2009). Texture displays:
a passive approach to tactile presentation. ACM CHI.
2261-2264, 2009.

[23] Harrison, C., Lim, B. Y., Shick, A. and Hudson, S. E.
(2009). Where to locate wearable displays?: reaction time
performance of visual alerts from tip to toe. ACM CHI.
941-944, 2009.

[24] Harrison, C., Ramamurthy, S. and Hudson, S. E. (2012).
On-Body Interaction: Armed and Dangerous. In
Proceedings of the International Conference on Tangible,
Embedded, and Embodied Interaction 19 - 22, 2012.

[25] Harrison, C., Schwarz, J. and E., H. S. (2011). TapSense:
Enhancing Finger Interaction on Touch Surfaces. ACM
UIST. 627-636, 2011.

[26] Harrison, C., Tan, D. S. and Morris, D. (2010). Skinput:
appropriating the body as an input surface. In ACM CHI.
453-462, 2010.

[27] Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P.
and Smith, M. (2004). Stitching: pen gestures that span
multiple displays. In Proceedings of the AVI. 23-31, 2004.

[28] Holleis, P., Schmidt, A., Paasovaara, S., Puikkonen, A.
and Häkkilä, J. (2008). Evaluating capacitive touch input
on clothes In Proceedings of the Mobile HCI. 81-90,
2008.

[29] Holz, C., Grossman, T., Fitzmaurice, G. and Agur, A.
(2012). Implanted User Interfaces. ACM CHI. 2012.

[30] Kane, S. K., Avrahami, D., Wobbrock, J. O., Harrison, B.
L., Rea, A. D., Philipose, M. and Lamarca, A. (2009).
Bonfire: a nomadic system for hybrid laptop-tabletop
interaction ACM UIST.. 129-138, 2009.

[31] Lévesque, V., Oram, L., MacLean, K. E., Cockburn, A.,
Marchuk, N. D., Johnson, D., Colgate, J. E. and Peshkin,
M. A. (2011). Enhancing physicality in touch interaction
with programmable friction. ACM CHI. 2481-2490,
2011.

[32] Marquardt, N., Kiemer, J. and Greenberg, S. What
Caused That Touch? Expressive Interaction with a

Surface through Fiduciary-Tagged Gloves. . In
Proceedings of.

[33] McGuffin, M., Burtnyk, N. and Kurtenbach, G. (2002).
FaST Sliders: Integrating Marking Menus and the
Adjustment of Continuous Values. GI. 2002.

[34] Mistry, P. and Maes, P. (2009). SixthSense: a wearable
gestural interface. In Proceedings of the CHI EA. 2009.

[35] Mukaibo, Y., Shirado, H., Konyo, M. and Maeno, T.
(2005). Development of a Texture Sensor Emulating the
Tissue Structure and Perceptual Mechanism of Human
Fingers In Proceedings of the International Conference
on Robotics and Automation. 2565-2570, 2005.

[36] Ni, T. and Baudisch, P. (2009). Disappearing mobile
devices ACM UIST.. 101-110, 2009.

[37] Ojala, T., Pietikäinen, M. and Mäenpää, T. (2002).
Multiresolution Gray-Scale and Rotation Invariant
Texture Classification with Local Binary Patterns. IEEE
Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 24 (7), 971-987, 2002.

[38] Richter, S., Holz, C. and Baudisch, P. (2012).
Bootstrapper: Recognizing Tabletop Users by their Shoes.
I ACM CHI. (in press). 2012.

[39] Richter, S., Holz, C. and Baudisch, P. (2012).
Bootstrapper: Recognizing Tabletop Users by their Shoes.
ACM CHI. (in press). 2012.

[40] Saponas, T. S., Harrison, C. and Benko, H. (2011).
PocketTouch: Through-Fabric Capacitive Touch Input.
ACM UIST.. 303-308, 2011.

[41] Saponas, T. S., Tan, D. S., Morris, D., Balakrishnan, R.,
Turner, J. and Landay, J. A. (2009). Enabling always-
available input with muscle-computer interfaces. ACM
UIST. 167-176, 2009.

[42] Sato, M., Poupyrev, I. and Harrison, C. (2012). Touché:
Enhancing Touch Interaction on Humans, Screens,
Liquids, and Everyday Objects. ACM CHI.

[43] Sturman, D. J. and Zeltzer, D. (1994). A Survey of
Glove-based Input. IEEE Computer Graphics and
Applications, 14 (1), 30-39, 1994

[44] Weiss, M., Wacharamanotham, C., Voelker, S. and
Borchers, J. (2011). FingerFlux: Near-surface Haptic
Feedback on Tabletops. ACM UIST. 615-620, 2011.

[45] Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J. and
Shen, C. (2007). Lucidtouch: a see-through mobile
device. ACM UIST. 269-278, 2007.

[46] Wilson, A. (2006). Robust Vision-Based Detection of
Pinching for One and Two-Handed Input. ACM UIST.
255-258, 2006.

[47] Wilson, A. D. (2010). Using a depth camera as a touch
sensor. Tabeltop. 69-72, 2010.

[48] Wilson, A. D. and Benko, H. (2010). Combining Multiple
Depth Cameras and Projectors for Interactions On,
Above, and Between Surfaces. ACM UIST.. 273-282,
2010.

[49] Wimmer, R. and Baudisch, P. (2011). Modular and
Deformable Touch-Sensitive Surfaces Based on Time
Domain Reflectometry. ACM UIST.. 517-526, 2011.

[50] Zhang, H., Yang, X. D., Ens, B., Liang, H. N., Boulanger,
P. and Irani, P. (2012). See Me, See You: A Lightweight
Method for Discriminating User Touches on Tabletop
Displays. ACM CHI. (in press). 2012.

