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ABSTRACT 
We present Magic Finger, a small device worn on the finger-
tip, which supports always-available input. Magic Finger 
inverts the typical relationship between the finger and an 
interactive surface: with Magic Finger, we instrument the 
user’s finger itself, rather than the surface it is touching. 
Magic Finger senses touch through an optical mouse sensor, 
enabling any surface to act as a touch screen. Magic Finger 
also senses texture through a micro RGB camera, allowing 
contextual actions to be carried out based on the particular 
surface being touched. A technical evaluation shows that 
Magic Finger can accurately sense 22 textures with an accu-
racy of 98.9%. We explore the interaction design space ena-
bled by Magic Finger, and implement a number of novel 
interaction techniques that leverage its unique capabilities. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 
General terms: Design 
Keywords: Touch input, always-available input, gesture 
input, contextual action, texture reorganization 

INTRODUCTION  
Recent years have seen the introduction of a significant 
number of new devices capable of touch input. While this 
modality has succeeded in bringing input to new niches and 
devices, its utility faces the fundamental limitation that the 
input area is confined to the range of the touch sensor. A 
variety of technologies have been proposed to allow touch 
input to be carried-out on surfaces which are not them-
selves capable of sensing touch, such as walls [16, 20], 
tables [20], an arbitrary piece of paper [18] or even on a 
user’s own body [18, 26, 40].  
Mounting cameras on the body has enabled these regions to 
become portable [17, 18, 34, 36]. However, like other vi-
sion-based implementations, the range of the sensor is lim-
ited to the viewing area of the camera, thus the capabilities 
of these sensors are in some ways more limited than are 
non-vision based techniques. 

These approaches to instrumentation have all focused on 
enabling touch capability for surfaces the user will touch 
with their finger. To overcome their inherent limitations, 
we propose finger instrumentation, where we invert the 
relationship between finger and sensing surface: with Mag-
ic Finger, we instrument the user’s finger itself, rather than 
the surface it is touching. By making this simple change, 
users of Magic Finger can have virtually unlimited touch 
interactions with any surface, without the need for torso-
worn or body-mounted cameras, or suffer problems of oc-
cluded sensors.  
Our work has been inspired by earlier projects in always-
available input [41]. Like those earlier projects, Magic Fin-
ger is capable of sensing the moment of touch and relative 
finger displacement on a surface. Further, inspired by the 
versatility of the human finger, Magic Finger can also sense 
the texture of the object a user touches, allowing for the use 
of a machine learning classifier to recognize the touched 
object. Thus, contextual actions can be carried out based on 
the particular surface being touched. Additionally, Magic 
Finger can also identify artificial textures and fiduciary 
markers. This extends its ability to recognize richer infor-
mation, thus enabling many novel interaction techniques.  
Magic Finger is a thimble-like device worn on the user’s 
finger (Figure 1). It combines two optical sensors: a lower-
resolution, high speed sensor for tracking movement, and a 
higher-resolution camera for capturing detail. In addition to 
this device, the contributions of this work also include an 
exploration of associated hardware and software design 
spaces, an evaluation of its texture sensing accuracy levels, 
and a set of applications and interactions that are enabled 
by Magic Finger.  

 
Figure 1: The Magic Finger device. 
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RELATED WORK 
In this section, we review the related literature in the areas 
of always-available input, research on contextual actions, 
and augmentation of the user’s finger. 

Always-Available Input 
Advanced sensing technologies have been used to help 
extend our ability to interact with computers from any-
where, supporting always-available input [41].  
One way to accomplish this is to extend the range of devic-
es. SideSight [12] uses an array of proximity sensors to 
detect a users’ finger movement on the side of a cell phone. 
Therefore, touch input is no longer limited to the small re-
gion of the touch screen. Similarly, Portico [7] and Bonfire 
[30] used  cameras installed on a laptop to capture the input 
occurring around it. PocketTouch allows capacitive sensors 
to function through fabric [40]. While these devices extend 
the range of sensors, they also are anchored to a device. 
Efforts have also been made to instrument a user’s sur-
rounding environment to enable touch. Touché [42] enables 
touch on everyday objects, including humans and liquids, 
while Scratch Input [20] recognizes gestures on larger sur-
faces, but each require a sensor to be connected to the 
touched object. Wimmer and Baudisch [49] demonstrated 
that touch gestures can be enabled on an arbitrary object by 
having the object connect to an electric pulse generator and 
a Time Domain Reflectometry sensor.  
Camera based sensors have also been used to sense input. 
Wilson [47] demonstrated that a properly positioned depth 
camera can be used to sense touch on surfaces. In the 
LightSpace system [48], a small room becomes interactive 
by combining multiple depth cameras and projectors.  
While the instrumentation of environments is promising, it 
is also limited. Alternatively, the human body can itself be 
instrumented to sense input. Interactive clothing is one way 
to do so [28], but requires special clothing. 
Many techniques enable body input of taps, postures, and 
whole body gestures. For example, Saponas et al. [41] used 
arm mounted electromyography sensors to sense pinch ges-
tures made by different fingers. Cohn et al. [16] proposed a 
technique to sense whole-body gestures that utilizes exist-
ing electromagnetic noise from nearby power lines and 
electronics. Harrison et al.’s Skinput [26] used arm mount-
ed bio-acoustic sensors to detect finger tap on the different 
locations of a users’ forearm. Tiny sensors could also be 
embedded on [36], or implanted under [29] the user’s skin. 
These techniques all open up new and interesting interac-
tion opportunities, however they cannot sense detailed fin-
ger movements required to emulate touch input.  
Several techniques have supported richer input on the hu-
man body [24]. The Imaginary Phone [17] uses a 3D cam-
era to detect taps and swipes on a user’s palm. OmniTouch 
[18] uses a depth-sensing camera and a micro projector to 
turn a user’s palm into a touch-sensitive display. 
SixthSense uses a small projector and camera, worn in a 
pendant device, to enable touch interactions on and around 

the body [34]. While such techniques enable always-
available input, the input is generally restricted to the body, 
and can suffer from occlusion. In contrast, we propose fin-
ger instrumentation, enabling input on almost any surface. 

Contextual Interactions 
Magic Finger is able to recognize textures and use the in-
formation to understand the environment, or object the user 
is interacting with, and perform associated contextual ac-
tions. While texture has been previously explored as an 
output channel for touch input [8, 22, 31] we are unaware 
of work where texture is used as an input channel.  
Relevant work by Harrison and Hudson used multispectral 
material sensing to infer the placement of mobile devices, 
and discussed potential uses, such as tunring off a cell 
phone when it is placed in a purse [19]. Alternatively a 
touch sensitive device can respond differently if it knows 
what caused the touch or who touched it [6, 25, 38, 50]. 
More broadly, research on contextual interactions in the 
ubiquitous computing literature is also relevant. We refer 
the readers to comprehensive surveys [10, 14].  

Augment The User’s Finger 
Early work in augmenting the human finger lies in the vir-
tual reality research, where data gloves are used to track the 
user’s hand position in space [43]. Several projects also 
exist outside of the VR literature. Marquardt [32] augment-
ed a user’s finger with fiduciary markers to inform an inter-
active tabletop what part of the finger was in contact with 
the surface. With Abracadabra [21], users wear a magnet 
on their finger to provide input above a mobile device. Fin-
gerFlux [44] also uses a small magnet on the finger, to sim-
ulate haptic feedback above an interactive tabletop. While 
these projects are all related in that they instrument the fin-
ger, none had the goal of supporting always-available input.  
Logisys’s Finger Mouse, a cylinder-shaped optical mouse 
that can be mounted on a finger, is a relevant commercial 
product [5]. It is used to control an on-screen cursor with a 
relative input mapping. Magic Finger extends this basic 
capability to also support absolute targeting, texture recog-
nition, and fiduciary marker identification. Furthermore, 
with Magic Finger, we explore a smaller form factor, and a 
rich interaction design space beyond cursor control. 

HARDWARE DESIGN SPACE 
In designing a device, our main goal is to enable the finger 
to sense touch on physical objects, without any environ-
mental instrumentation. In order to emulate traditional 
touch techniques, the device must be able to sense contact 
and 2D positional movements. In this section, we present a 
design space of possible hardware implementations that 
could enable these goals. For a broader discussion of hard-
ware for small on-body devices, we refer the reader to Ni 
and Baudisch’ s work on disappearing mobile devices [36]. 
 
Scope of Recognition 
We define three scopes of recognition: none, class, and 
instance. In its simplest form, the device could be able to 
sense finger movement without the capability of knowing 



 

 

anything about the contact object (none). However, when it 
is the finger itself performing the sensing, it would be help-
ful to know what the finger is touching, so the input could 
be directed to an appropriate device. The scope of recogni-
tion could be increased to recognize certain classes of ob-
jects (e.g. a table or a phone) (class), or could be further 
extended to distinguish between specific instances of ob-
jects (e.g. my table vs. your table) (instance).  

Sensing X-Y Movements 
To emulate traditional touch, the hardware must be able to 
sense X-Y movements. Previous work has shown that an 
optical flow sensor (found in optical mice) can be used as a 
small touch sensitive device [9, 36]. As such, 2D finger 
movements could be detected by affixing an optical flow 
sensor to the finger. Such sensors can be extremely small 
and offer reliable 2D motion sensing on a wide variety of 
surfaces, but a light source is required. Alternatively, a me-
chanical device, such as a small trackball could be used, but 
may not be as robust to varying types of surfaces. A me-
chanical device may also require a larger form factor.  

Sensing Material 
To increase the recognition scope, the device could sense 
the material that the finger is in contact with. This could be 
achieved with optics, using texture recognition algorithms 
[37]. Using an optical flow sensors may be difficult, as 
their resolutions are typically low (e.g. 18x18). Higher 
quality cameras may be required to improve the robustness 
of material recognition or to extend the recognition scope 
to instance. Alternatively, a Multispectral Material Sensor 
[19] could be used, but would only support a recognition 
scope of class. To sense properties such as roughness, soft-
ness, and friction, a texture sensor [35] could be used, but 
may require the user to touch the surface in specific ways. 

Sensing Contact 
To sense contact, a hardware switch, which connects a cir-
cuit when being pressed by a touching force, may be most 
accurate. While this would enable explicit sensing of con-
tact, it would require the device to have an additional sin-
gle-purpose sensor. Contact could instead be inferred from 
an audio sensor [25], but accuracy may not be as high. Al-
ternatively, contact could be inferred from an optical sensor 
that is already present to sense movements and material.  

Output  
In the simplest form, the device could provide no output at 
all to the user. However, this could be severely limiting, 
especially in cases where periphery devices that provide 
feedback are not available. Tactile feedback is possible but 
may come with high power consumption, and would re-
quire an additional component. One or more LEDs could be 
used to display bit-wise low resolution information [36, 
23]. If the device used optical sensing, it may already be 
equipped with an LED, preventing the need for additional 
components. Richer forms of output could be provided by a 
speaker or LCD display, but would require larger form fac-
tors and greater power consumption.  

Form Factor 
The device needs to be small so that it can fit on the users’ 
finger. Ideally, the device would be undetectable when 
dormant [36]. There are a number of ways which the device 
could be affixed to the finger. It could be embedded on a 
ring or thimble like structure worn on the tip of the finger 
(Figure 2a). This would allow users to remove the device 
when desired, or twist it to deactivate sensing. Alternative-
ly, if small enough, the device could potentially be embed-
ded under the finger nail (Figure 2b), on the surface of the 
fingertip skin, or implanted under the skin with exposed 
components for sensing (Figure 2c) [36]. A larger form 
factor could be worn above the finger. However this may 
cause offset problems in the sensing, and could be suscep-
tible to occlusion problems. 
     

 
Figure 2: Possible form factors for the hardware. 

MAGIC FINGER  
After carefully considering the aspects of the hardware 
design space, we developed Magic Finger, a proof-of-
concept prototype that enables always-available input 
through finger instrumentation. In this section we describe 
our implementation, and the basic capabilities of the device. 

Hardware Implementation 
To achieve sensing of positional movements and sensing of 
material, our prototype uses two optical sensors. A low 
resolution high frame rate optical flow sensor is used to 
sense 2D finger movements, and a higher resolution, lower 
frame rate camera is used to sense material (Figure 3).  

 
Figure 3. The Magic Finger Device. 

Optical Flow Sensor 
We used an ADNS 2620 optical flow sensor with a modi-
fied HDNS-2100 lens. This sensor is often used in optical 
mice, and is reliable on a large variety of surfaces. The sen-
sor detects motion by examining the optical flow of the 
surface it is moving on. The ADNS 2620 sensor is a low-
resolution black and white camera (18 × 18 63μm2 pixels). 
Our initial tests showed that the sensor could be used to 
recognize textures, but only at the class scope of recogni-
tion, and only with a very small number of items (4).  



 

 

Micro RGB Camera 
To provide an enhanced scope of recognition, we used an 
AWAIBA NanEye micro RGB camera [4]. In comparison 
to the optical flow sensor, NanEye has a higher resolution 
and smaller pixels, and thus captures more subtle details of 
textures. The micro camera is 1mm × 1mm × 1.5mm 
(Figure 4). It captures color images at a resolution of 248 × 
248, 3 μm2 pixels, at 44 fps. For image processing, we con-
verted the signal to greyscale. While it would be desirable 
to also use the NanEye for sensing optical flow, its low 
frame rate makes this difficult. We expect future solutions 
could be achieved with a single miniature sensor. 
We embedded the NanEye on the edge of the optical flow 
sensor. To prevent occlusions from wiring, we crop to only 
use 70% camera’s view to 175 × 175 pixels (Figure 4).  
Light Source 
In order for the camera and the optical flow sensor to func-
tion, an external light source is needed to illuminate the 
surface underneath it. We used a 5mm white LED, which 
has similar size and brightness with those used in optical 
mice. The LED can also be conveniently used for output.  
Physical From 
Magic Finger is affixed to the fingertip using an adjustable 
Velcro ring. A small plastic casing holds the components. 
The case was designed to control the distance between the 
RGB camera and surface during contact (Figure 1).  
Computer Interfacing 
The optical flow sensor and the LED were connected to an 
Arduino UNO board [3], which facilitates communication 
with the computer, an HP TouchSmart Tm2 running Win-
dows 7. The NanEye is connected directly via USB. Teth-
ering the device to a computer was an enabling technology 
for our prototype, and not our vision for future implementa-
tions. See Future Work for a discussion of power and com-
munication capabilities required for an untethered implemen-
tation. 

 
Figure 4: Left: the NanEye camera. Right: the field 
of view is a 175 x 175 rectangle (yellow region). The 
red region is used to detect changes in contrast.    

Device Capabilities 
Relative Positional Movement 
Positional movement data is obtained directly from the 
optical flow sensor using the Arduino. Our program re-
ceives (X,Y) coordinates a resolution of 400cpi at 15 fps.   
Sensing Contact 
Magic Finger uses the micro camera to sense contact with a 
surface. Rapid changes in contrast (due to reflection of the 
illuminator) are used to signal changes in contact. To detect 

contact, we continuously calculate the overall contrast of a 
60x60 pixel square of the sensor image, by averaging the 
square difference between each pixel and its neighbors (in 
grayscale space). When the Magic Finger is more than 
5mm from a surface, light from its built-in LED is not re-
flected back, and a uniformly darker image is seen. A 
change within a small window of time form this darker 
image to a brighter image is measured against threshold 
values of our contrast metric for changes downward (lift-
up) and upward (touch-down) (see Figure 5).  

 
Figure 5. Contrast increases with the finger ap-
proaches a surface. Leftmost: the Magic Finger is 
more than 5mm from a surface. Rightmost: the 
Magic Finger is in contact with the surface 

Identifying Material 
When Magic Finger detects a contact event, the current 
frame of the RGB Camera is used for. texture recognition. 
Textures are classified using a machine learning algorithm. 
The first step is to describe the texture using a feature vec-
tor.  In our implementation, we used Local Binary Patterns 
(LBP) to retrieve the unique features [37]. The algorithm 
detects 10 microstructures inside a texture (e.g. edges, 
lines, spots, flat areas). The histogram of the 10 microstruc-
tures uniquely describes a texture. This algorithm is orien-
tation invariant, allowing recognition independent of the 
angle which the finger touches a surface. The feature vec-
tors are also gray-scale invariant, making it robust in differ-
ent lighting conditions. To train the classifier, we used 
Chang and Lin’s LIBSVM  algorithm using a Support Vec-
tor Machine (SVM) [13]. Before we trained the model, we 
tuned the required SVM parameters that gave high cross-
validation scores. 
Environmental vs. Artificial Textures 
We classify the types of textures Magic Finger can sense as 
environmental and artificial. Environmental textures are 
naturally occurring in the user’s environment, such as a 
table or shirt. In contrast, artificial textures are explicitly 
created for the purpose of being used by Magic Finger. We 
found that a simple way to create textures was to print a 
grid of small ASCII characters (Figure 6).  
Fiduciary Markers 
The above classification of textures allows Magic Finger to 
increase its scope to class recognition. If we are to further 
increase the scope to instance recognition, further capabili-
ties are required. A common approach to tag specific ob-
jects is to use bar codes or fiduciary markers [2, 15]. We 
used the Data Matrix code, a two-dimensional barcode con-
sisting of a grid of black and white cells. The Data Matrix 
codes we used were 10×10 cells, representing numerical 
values between 0 and 9999. 
To be properly recognized, the entire Data Matrix must be 
in the field of view. To ease targeting, we print a cluster of 
identical Data Matrix codes, each exactly ¼ the size of the 



 

 

RGB camera’s field of view to ensure at least one code is 
fully visible. A library is used to decode the tags [1]. When 
Magic Finger detects a contact event, an API call is made 
to decode the frame. This call takes approximately 240ms, 
and is performed before texture classification occurs. 
A future implementation of Magic Finger could utilize 
grids of fiduciary markers, such as is done by Anoto, in 
place of the ASCII-based artificial textures we designed. 
Nevertheless, we found that the ASCII-based technique 
was an effective way to easily generate artificial-textures. 

 
Figure 6: Left: 22 environmental textures used in 
the study. Right: Data Matrix, artificial texture, and 
environmental texture, as seen by a human and by 
the NanEye. 

SYSTEM EVALUATION  
We conducted a study in order to evaluate the accuracy at 
which Magic Finger can recognize environmental textures, 
artificial textures, and Data Matrix codes. This study was 
meant to serve as a technical evaluation of Magic Finger’s 
capabilities, not a user study of the device.  
For the environmental textures, we collected 22 different 
textures from a large variety of everyday objects, including 
public items, personal items, and parts of the user’s body. 
The textures we sampled are shown in Figure 6. 
To create artificial textures, we printed a grid of ASCII 
characters in black Calibri font, with a font size of 2pt and a 
line space of 1.6pt. The textures were printed on a Ricoh 
Aficio MP C5000 laser printer at 1200 DPI. We chose 39 
characters found in a standard US English keyboard, in-
cluding all 26 English capital letters (A - Z) and 13 other 
characters [~ ! @ # $ % ^ & ( - + = .”]. For the data matrix, 
we randomly selected 10 out of 10,000 possible codes: 
1257, 3568, 9702, 3287, 4068, 5239, 8381, 6570, 0128, and 
2633, with each printed clusters of 72 × 15 identical codes. 
For each environmental texture, artificial texture, and Data 
Matrix, 10 samples were collected twice a day for 3 days 
(as in [19]). Samples in the same class were obtained from 
the same object but from different locations. In total, we 
collected 60 samples for each material. The accuracy of 
recognition was tested using a 5-fold cross validation pro-
cedure. Because training and testing data may include 
points that were sampled in an adjacent time (e.g. points 
that tend to be similar), we randomized the order of the 

points prior to the test [19]. The Data Matrix recognition 
was evaluated by calculating the accuracy of decoding. 

Results 
Cross validation achieved an accuracy of 99.1% on the 22 
tested environmental textures. This is a promising result 
given that we were only using 175 × 175 pixels (e.g. 70% 
of the camera’s view ). To better understand how the classi-
fication accuracy is affected by the resolution of the cam-
era, we cropped the sample images from their center into 
smaller images of 18px2, 70px2, and 122px2. The results of 
the 5-fold cross validation are shown in Figure 7, left. 
Samples of 70px2 achieved 95% accuracy across the 22 
textures. This gives future engineers some flexibility when 
choosing sensors for finger instrumentation.  

   
Figure 7: Cross validation accuracy. Left. On envi-
ronmental textures. Right. On and mixed environ-
mental and artificial textures.  

For the ASCII artificial textures, cross validation yielded 
83.8% accuracy with all the 39 tested characters. Given the 
large number of textures, this result is also promising. The 
lower accuracy is due to the larger number of textures, and 
also because the different textures are less visually distin-
guishable than the environmental textures we selected.  
To see how the number of textures impact accuracy levels 
and find an optimal set of characters to use, we performed 
another 4 iterations of tests by progressively removing tex-
tures that resulted in lower accuracy rates. The accuracy 
levels through each iteration were 86.4% for 36 textures,  
89.9% for 31 textures, 97.9% for 13 textures, and 99.5% 
for 10 characters [B G I ! # % ^ ( + .].  
The above results indicate that Magic Finger can recognize 
22 environmental textures or 10 artificial textures with an 
accuracy of above 99%. We also tested accuracy levels 
when combining these two sets, for a total of 32 textures. 
The Cross validation accuracy was 98.9% using the 
175x175 pixel image. We also tested the classification ac-
curacy with the smaller cropped images. The results of the 
5-fold cross validation are shown in Figure 7, right. 
The Data Matrix codes were correctly decoded for 598 of 
the 600 samples we collected, which yields an accuracy of 
99.7%. In both failure cases (one for 3568, one for 9702) 
the API reported that no Data Matrix was recognized.  

Summary 
The results of our evaluation are very promising. Accuracy 
levels indicate that Magic Finger would be able to distin-
guish a large number of both environmental and artificial 
textures, and consistently recognize Data Matrix codes. 



 

 

Compared to Harrison and Hudson’s multispectral material 
sensing, which was able to classify 27 materials with an 
accuracy of 86.9% [19], we have obtained an accuracy of 
98.9% across 32 textures. Overall, this demonstrates the 
feasibility of using a Magic Finger device for interactive 
tasks. In the following sections, we explore the interaction 
techniques and usage scenarios that Magic Finger supports. 

INTERACTION DESIGN SPACE 
Having developed a robust device, we sought to develop 
interaction techniques to facilitate its use. Here, we define 
the interaction design space for Magic Finger using 5 di-
mensions, described below. 
Input Texture 
The input textures vary according to the degree of specifici-
ty and information bandwidth they allow. We differentiate 
our interaction design space by 3 types of textures the user 
may encounter: environmental textures are textures of real 
objects, unmodified for Magic Finger; artificial textures 
refer to textures engineered for the Magic Finger, as we 
have discussed previously; and dynamic textures are those 
that change over time. Dynamic textures, for example, can 
be used to communicate between 2 Magic Finger devices.  
Input Type 
The possible input type depends on the specific capabilities 
of an implementation of Magic Finger. That is, our imple-
mentation is limited to having the Magic Finger act as a 2-
state input device. Thus, input actions can either be tap 
input (sensing contact), or gesture input (positional move-
ment).  
Texture to Result Mapping 
The ability to recognize different textures allows contextual 
actions to be carried out by the Magic Finger. The map-
pings of texture to result vary by the degree with respect to 
their artificiality: Intrinsic mappings rely on the semantics 
of the touched object to define the mapping. For example, 
tapping on the empty space of a phone always triggers a 
function of the phone, e.g. fast dial a number. Intrinsic 
mappings may suffer from a lack of flexibility, and con-
flicts in mappings. In contrast, extrinsic mappings associate 
commands to unrelated physical objects. Such mappings 
are flexible but may be less discoverable or memorable. 
Resulting Action Type 
Many types of actions could result from user input. We 
classify three main types: perform a command execution, 
provide continuous control, or serve as a mode delimiter. 
Feedback 
Based on needs, feedback can be internal or external to 
Magic Finger. For example, internal feedback could pro-
vide information using an LED while richer external feed-
back could be provided by an attached or secondary device.  

AUTHORING ENVIRONMENT 
We created an application to help users manage their regis-
tered and recognized textures (environmental and artificial) 
and their associated functional mappings. A window dis-
plays a list of the defined texture classes (Figure 8 left). 
Each texture class in the list contains a sample image of the 

texture and a user defined title for that texture class. Users 
can double-click the sample images to view all the samples 
of that object that are used in training the SVM model. A 
button in the user interface can be used to create a new tex-
ture class. Users can also add samples to a new or existing 
texture class as input to the recognizer. 
Each texture class also has an associated dropdown menu, 
which shows a list of functions which are preset resulting 
actions that could be mapped to any texture class (Figure 8 
middle). For the purposes of demonstration, we have prede-
fined a variety of resulting actions which can be mapped to 
Magic Finger input. In some cases, the authoring environ-
ment allows the user to adjust parameters of an action. For 
example, if the user selects the “Send SMS” action (which 
automatically sends an SMS message) from the drop down 
list, a pop up dialog is displayed where the user can enter a 
recipient number and message. To automatically launch 
external applications, the user can select “external applica-
tion” from the action drop down list. The user can then 
drag-and-drop an icon of a desired application onto the 
menu item (Figure 8 right). This allows the user to link 
Magic Finger actions to existing applications, as well as to 
define their own scripts in their preferred languages and 
link them to Magic Finger.  

 
Figure 8: Left: list of texture classes. Middle: the drop 
down list of functions; Right: external applications 

Authoring Artificial Textures 
The authoring application also allows users to generate 
ASCII-based artificial textures which can be used, for ex-
ample, as stickers to be placed on objects. In these textures, 
the individual ASCII characters are so small that they are 
indiscernible to the human eye, and can be used as pixels to 
create two-colour graphical images. While each “pixel” is 
the same character, the pixels can take-on a foreground or 
background color. We chose two colors that are distin-
guishable by the human eye, but are indistinguishable in 
greyscale during recognition ( right). 

 
Figure 9: Left: the paint.net application; Right: the re-
sulting texture. 



 

 

To author these textures, we modified Paint.NET, an image 
editing application, to include a “save as texture” option ( 
left). This option prompts the user to enter a character, and 
then converts the current image into an HTML document 
consisting entirely of that character rendered in either the 
foreground or background color. Such images can be used 
to give the artificial textures user friendly appearances, 
such as icons representing their functions. 

INTERACTION TECHNIQUES 
In order to explore the interaction design space we have 
described, we implemented a number of interaction tech-
niques. Each of the following techniques serves as an ex-
emplar of a point in our design space, as well as a portion 
of a coherent set of possible uses for Magic Finger. Some 
of the interactions are novel while others show how Magic 
Finger can be used to implement previously published 
techniques that required numerous different hardware con-
figurations. In the example interaction techniques below, 
we explicitly mention the corresponding design dimension. 
Some of the below interactions involve multiple Magic 
Fingers. To implement these scenarios, we constructed a 
second Magic Finger without the RGB camera. This device 
was unable to sense textures, but was sufficient for demon-
strating the desired multiple-device interactions. 

Tap Input 
PocketTouch 
Magic Finger can be used to remotely access or control 
mobile devices. We implemented a resulting action of mut-
ing an incoming Skype call (command execution), and 
mapped this to touching a handbag. If the user receives an 
unwanted call when their Smartphone is in the handbag, the 
user can simply tap the handbag to mute the notification. 
This interaction is much like PocketTouch [40], but does 
not require a phone’s capacitive sensor to be placed in a 
special mode, or require the phone to be placed at a specific 
location (Figure 10a).  

Tap-to-Talk 
Because Magic Finger can identify the object that users 
touch, tapping different surfaces can trigger different com-
mand executions. In our implementation, the empty surface 
of a phone is used as a shortcut ‘button’ to send a frequent 
SMS message to a predefined recipient, e.g. “I’m on my 
way home.” (b). This is an example of an intrinsic map-
ping. Users may also take advantage of inherent features of 
physical artifacts to define input textures. We created an 
extrinsic mapping of tapping on the logo of a t-shirt, to 
launching the Windows Voice command app. Thus, tap-
ping on this special area of the shirt serves as a mode delim-
iter for entering speech input (Figure 10c).  
Skinput 
By recognizing skin as a texture, Magic Finger provides a 
method for using skin as an input surface, without requiring 
additional sensors. We utilized this to create an “am I late?” 
gesture – when the user taps their wrist (where a watch 
might have been – intrinsic mapping), Magic Finger checks 
for an upcoming appointment and either displays it on-
screen (external feedback), or blinks its built-in LED (in-
ternal feedback) to indicate “time to head out!” (Figure 
10d). 
Pinching Finger to Thumb 
The finger to thumb pinch action has been shown to be a 
useful gesture for freehand input [46]. By recognizing the 
thumb as an environmental texture, Magic Finger can easi-
ly detect a pinch when the thumb is tapped (Figure 10e). 
We mapped pinch to a command execution of advancing 
slides in a presentation, as a replacement for holding a 
wireless presentation mouse. 
Data Matrix Buttons  
In addition to tapping environmental textures, users can 
also tap artificial ones. A grid of printed Data Matrix codes 
can be used as physical buttons. The decoded numeric data 
can be used to trigger a command or to retrieve contextual 
information. In our implementation, we assigned specific 
numbers to PowerPoint documents. A user can print the

 

Figure 10. Tap and Gestural-based Interactions. (a) Tap on the bag to mute a Skype call; (b) Tap on the phone to send a 
frequent SMS message; (c) Using the logo of a t-shirt as a mode delimiter; (d) Tap the wrist to check an upcoming ap-
pointment; (e) Pinch gesture (f) Data Matrix Buttons; (g) Occlusion Free Input; (h) FaST slider widget; (i) Multi-surface 
crossing gesture; (j) Application launch pad; (k) Sticker as disposable remote controls; (l) Passing texture to another Mag-
ic Finger; (m) Use Magic Finger as a periscope to check out traffic. 



 

 

PowerPoint slides with the associated Data Matrix code at 
the bottom of each page. Tapping the code opens the 
presentation on the user’s computer. We also associated 
codes on magazine articles with webpages (Figure 10). Tap-
ping the Data Matrix opens a URL associated with the article.  

Gesture Input 
Occlusion Free Input 
Occlusion Free Input allows users to interact with a touch 
screen device by gesturing on a nearby surface. This elimi-
nates the occlusion of the screen by a users’ hand. We im-
plemented a navigation application, where users can pan or 
zoom a map displayed on a tablet device (continuous con-
trol). By mapping this action to the back of a tablet, users 
can carry out back-of-device input [45], without needing a 
specially instrumented tablet device. Additionally, Side-
Sight  [12] can be emulated by mapping the action to the 
table that the device is resting on (Figure 10g).  
FaST Sliders 
We implemented a FaST slider widget to control volume 
and playback of multi-media [33] (Figure 10h). FaST slid-
ers  allow manipulation of multiple, discrete or continuous 
parameters from a single menu. Once activated, the user 
can select a parameter to manipulate with a directional 
mark. While the finger remains down, the user can then 
adjust the value of the selected parameter by dragging. If 
the user is close to a display device, visual feedback for the 
menu can be displayed onscreen (external feedback). When 
a display is not available, we blink the Magic Finger’s LED 
to indicate when a parameter has been selected, so the user 
knows to begin parameter adjustment (internal feedback).  
Multi-Surface Crossing Gestures 
Magic Finger can detect a crossing gesture from one sur-
face to another (Figure 10i). This is accomplished by per-
forming texture recognition any time the finger dwells 
while still in contact with a surface. We mapped this ges-
ture to activating a slide deck on a projector in a meeting 
room. The user can tap a Data Matrix on their slide printout 
to open the PowerPoint, and tap the table to connect the 
laptop to a secondary monitor (i.e. projector). If a crossing 
gesture is detected from the Data Matrix to the table, the 
PowerPoint window is moved from the laptop display to 
the projector. In this case, the crossing gesture has an in-
trinsic mapping, as it represents a relationship between the 
two mapped surfaces. These multisurface gestures are simi-
lar to stitching [27], but do not require inter-device com-
munication between the surfaces. 

Input Stickers 
Artificial textures can be used to increase the number of 
distinguishable surfaces in an area.  By printing the artifi-
cial textures on adhesive strips, we create Input Stickers. 
We describe the associated interaction techniques below. 
Application Launch Pad 
We printed a set of Input Stickers that take-on the appear-
ance of desktop icons (Figure 10j). The user can place these 
stickers in a convenient location in their work area, and tap 
the stickers to launch the associated desktop application. 
This emulates functionality shown in MagicDesk without 

requiring the entire desk surface to be a touch sensitive 
surface [11]. 
Disposable Remote Controls 
Input stickers can also be used as remote controls. We 
printed a stack of stickers and put them beside the physical 
on-off switch for the speakers in a public room (Figure 
10k). When entering a room, a user can pick up a sticker 
before sitting down. Tapping the sticker plays and pauses 
music on the room’s sound system. When leaving the 
room, the user can replace the sticker on the stack, or dis-
pose of it.  

Additional Features 
Identify Awareness 
An interesting property of Magic Finger is that it is inher-
ently user-identity aware. We configured the music remote 
control, described above, to play a user’s favorite type of 
music, based on the identity of the user tapping the sticker. 
Traditional touch devices are not able to recognize users, 
without specialized hardware and making potentially error 
prone inferences [39, 50].  
Passing Textures 
In some cases, a user may want to virtually pass a texture 
that has been read by the Magic Finger to a remote receiver 
or to another user. We use the pinch gesture as a mode de-
limiter for “picking up” a texture. If a pinch is detected 
immediately after a Data Matrix is tapped, then the Data 
Matrix code is temporarily stored. When the pinch is re-
leased, the LED emits a Morse code pattern, representing 
the 4 digit number associated with the Data Matrix. We 
implemented a simple product scanner application that uses 
a webcam to read the Morse code and display information 
about the associated item, such as its price. We also imple-
mented a second Magic Finger that can read the Morse 
code as a dynamic texture and carry out the associated 
functions of the Data Matrix code after it is passed to the 
user from the source user (Figure 10l).  
The Periscope 
People often use their fingers to sense areas that they can-
not see. For example, we may use our hand to search for a 
pen dropped between the cushions of a couch. Magic Fin-
ger allows users to enhance the capabilities of such prob-
ing. By viewing its real-time video feed on a handheld de-
vice, the Magic Finger becomes an extension of the user’s 
eyes. For example, a user can look behind them, around a 
corner or out the window of a car by simply pointing their 
finger in the associated direction (Figure 10m). 

DISCUSSION AND FUTURE WORK 
Having used Magic Fingers, we have made several obser-
vations which may be of benefit to those seeking to imple-
ment one. In this section, we discuss some of the insights 
we have gleaned from our experiences.  

Device Size and From Factor 
While our form factor is small enough to fit on a fingertip, 
it is still larger than what we envision for the future.  



 

 

The hardware does have room to be made much smaller. 
Our prototype is limited by the size of the ADNS 2620 
chip. The chip was designed to be used in a mouse, and so 
its form factor is optimized to fit with the other components 
of the mouse. The core sensor of the chip, however, is only 
2 × 3 mm wide. Therefore, reengineering the chip to fit the 
sensor will significantly reduce the size of Magic Finger.  
The NanEye camera has an ideal form factor. However, it 
is limited by its frame rate. Ideally, Magic Finger would 
need only one optical sensor to handle all of its functionali-
ty. For optical flow to be detected reliably, the sensor 
would need to have a frame rate of approximately 1500fps. 
Based on our evaluation, the resolution should be at least 
70 × 70px to enable both optical flow and texture recogni-
tion. Given existing technologies, we are optimistic that a 
sensor matching these specifications will soon be available. 
The other component that would need to be miniaturized is 
the LED. Micro LED’s are available today; testing would 
be needed to determine minimum brightness requirements. 

Power and Communication 
A limitation of our hardware is that it is tethered to a near-
by host PC. This simplified our implementations, but for 
Magic Finger to become a completely standalone device, 
power and communication needs to be considered.  Holz et 
al. provide a thorough review of potential technologies that 
can be used for power and communication in a micro form 
factor [29]. Powering can be accomplished through re-
chargeable batteries, or harvesting power from the body or 
the environment [29]. Communication can be provided 
through a Bluetooth protocol, which consumes little power. 
Processing responsibilities could be performed by a Blue-
tooth-tethered mobile phone. 

Evaluations 
We presented a technical evaluation that demonstrated 
promising results for sensing accuracy of the Magic Finger. 
The results should be considered a high bar of what a Mag-
ic Finger could achieve, since the samples were collected 
under controlled conditions. Future evaluations should look 
at how differences in contact angles may impact captured 
image quality. Design considerations of the form factor of 
the device should aim to facilitate capturing good quality 
samples.  
Magic Finger could also benefit from more formal user 
studies to understand how the device would be used by end 
users. For example, a user study may help us find a pre-
ferred location to mount the device, or identify important 
topics we have not explored, such as the “Midas touch” and 
false activations. 

Interactions 
The interactions which we implemented and demonstrated 
should be considered exploratory in nature, and only repre-
sent a small sample of what is possible with the Magic Fin-
ger. In our actual implementation, issues such as conflicts 
between operating modes and resulting actions would re-
quire a more careful examination. Introducing aids to help 

users learn or remember mappings would also be a fruitful 
topic for future work.  
Magic Finger in its current implementation is limited in 
absolute positioning. One known technique to enable abso-
lute positioning for artificial textures would be to encode 
location into the textual pattern (eg: Anoto [2]). For natural 
textures, absolute positioning may never be possible, alt-
hough with improved sensing, location could be sensed at 
higher granularity (e.g. recognize locations of skin rather 
than simply “skin”). 

CONCLUSION  
In this paper, we introduced the concept of finger instru-
mentation and our prototype Magic Finger, a novel device 
that extends users’ touch capability to everyday objects. 
Instead of requiring instrumentation of the user’s environ-
ment, or external cameras which may be prone to occlu-
sion, Magic Finger is unique in that the finger itself is in-
strumented to detect touch. Our system evaluation showed 
that Magic Finger can recognize 32 different textures with 
an accuracy of 98.9%, allowing for contextual input. We 
presented a design space of interactions enabled by Magic 
Finger, and implemented a number of interaction tech-
niques to explore this design space. Future work will focus 
on investigating topics such as “Midas touch” and false 
activations, and on understanding how users will use the 
Magic Finger. We will also explore hardware solutions for 
miniaturizing the form factor of the Magic Finger. 
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